Warm Up: In the diagram below of right triangle KTW, $K W=6, K T=5$, and $m<K T W=90^{\circ}$. What is the measure of $<K$, to the nearest tenth of a degree?

What is a reciprocal?

$$
\begin{array}{r}
8 \\
\frac{1}{8}
\end{array}
$$

secant, Reciprocal of cosine

$$
\sec \theta=\frac{1}{\cos \theta}
$$

cosecant, Reciprocal of sine

$$
\csc \theta=\frac{1}{\sin \theta}
$$

cotangent, RecipRocal 6 tangent

$$
\cot \theta=\frac{1}{\tan \theta} \text { or } \frac{\cos \theta}{\sin \theta}
$$

3) Which ratio represents cscA n the diagram below?

4) In the diagram below of right triangle $J \mathrm{TM}, \mathrm{JT}=12, \mathrm{JM}=6$, and $\mathrm{m}<\mathrm{JMT}=90^{\circ}$. What is the value of cot?

$\begin{aligned} 3 b+b^{2} & =144 \\ \sqrt{b^{2}} & =\sqrt{108}\end{aligned}$

5) If ${ }^{\theta}$ is an angle in standard position d its terminal point passes through the point $(-3,2)$, find the exact) value of $(\csc \theta$

$$
\begin{array}{r}
2^{2}+3^{2}=c^{2} \\
4+9=c^{2} \\
\sqrt{3}=\sqrt{c^{2}}
\end{array}
$$

 $\sin \theta=\frac{2}{\sqrt{13}}$
$\csc \theta=\frac{\sqrt{13}}{2}$
6) Angle ${ }^{\theta}$ is an angle in standard position and ($-4,0$) is a point on the terminal side of ${ }^{\theta}$. What is the value of $\sec ^{\theta}$?

Homework: p. 377 \#14

In $11-18, P$ is a point on the terminal side of an angle in standard position with measure θ and on a circle with center at the origin and radius r. For each point P, find: a. r b. $\csc \theta$ c. $\sec \theta$ d. $\cot \theta$
14. $(-5,-5)$

