## **WARM UP**

Solve the equation  $3x^3 - 5x^2 - 48x + 80 = 0$  algebraically for all values of x.

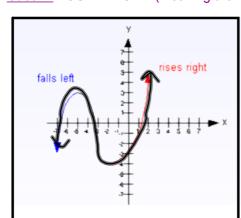
$$(3x^{3}-5)^{2}+(-48x+80)=0$$

$$(3x^{3}-5)^{2}+(-48x+80)=0$$

$$(3x-5)-16(3x-5)=0$$

$$(3x-5)(y^{2}-11)$$

$$(3x-5)(x+4)(x-4)=0$$


$$3x-5=0 \quad x+4=0 \quad x-4=0$$

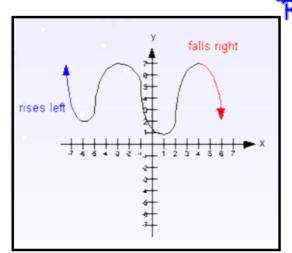
$$3x=5 \quad x=5$$

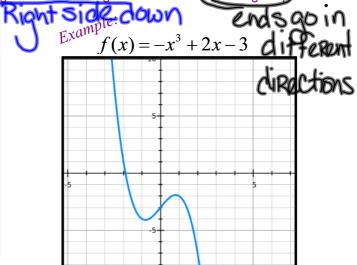
$$x=5 \quad x=5 \quad x=4,4$$

## Relationships between Polynomials Equations and their Roots & Signs

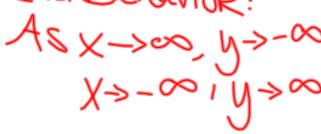
Case 1: POSITIVE ODD (Meaning the leading coefficient is positive and it is an odd degree.)



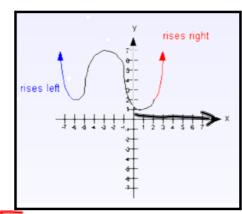

Example:  $g(x) = x^5 - 2x^3 + 5$ 


Dea Odd: ends go in Opposite directions

LC Pos: Right end goes up End behavior:


$$As x \rightarrow \infty, y \rightarrow \infty$$
  
 $x \rightarrow -\infty, y \rightarrow -\infty$ 



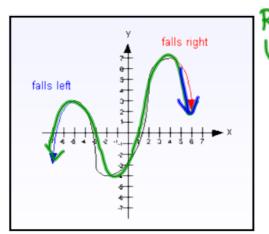


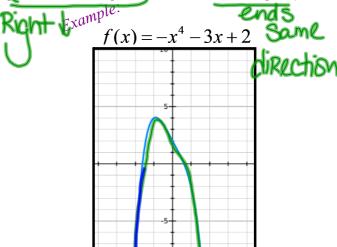



End Behavior:



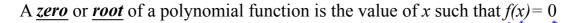






Example:  $h(x) = x^6 - 2x^5 - 3x^4 + 2x - 1$ 



End Behavior:



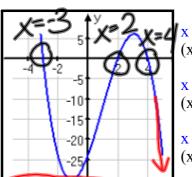





Cnd Behaviore:

(-> -0 ) y -> -0

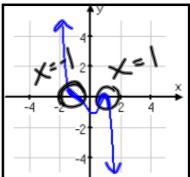



## **Factor Theorem**

If f(x) is a polynomial AND

1) f(c) = 0, then x - c is a factor of f(x).

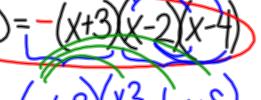
2) x - c is a factor of f(x), then f(c) = 0.


Roots are negations of the factor



x = -3 is a root (x+3) is a factor

x = 2 is a root (x-2) is a factor


x = 4 is a root (x-4) is a factor



x = -1 is a root (flat???)

(x+1) is a factor

x = 1 is a root (x-1) is a factor



 $-\chi^{3}+6\chi^{2}-8\chi$  $-3\chi^{2}+18\chi-2^{2}$ 

f(x)=-(x+1)(x-1)

· (inear (once)

·parabola (twice