

### **Introduction to Functions**

relation- a set of ordered pairs



<u>function-</u> relation in which no two ordered pairs have the same first element, and every first element in mapped to a second.

Regents Practice:

Operation w/ Functions



A manufacturing company has developed a cost model,  $C(x) = 0.15x^3 + 0.01x^2 + 2x + 120$ , where x is the number of items sold, in thousands. The sales price can be modeled by S(x) = 30 - 0.01x. Therefore, revenue is modeled by  $R(x) = x \cdot S(x)$ . The company's profit, P(x) = R(x) - C(x), could be modeled by

$$\begin{array}{c}
0.15x^{3} + 0.02x^{2} - 28x + 120 \\
2) -0.15x^{3} - 0.02x^{2} + 28x - 120 \\
3) -0.15x^{3} + 0.01x^{2} - 2.01x - 120 \\
4) -0.15x^{3} + 32x + 120 \\
30 - 0.01x - 0.15x^{3} + 32x + 120
\end{array}$$

$$30x - 0.01x^{2} -$$

## Evaluating Functions

**F-BF.1:** Write a function that describes a relationship between two quantities

Let f be the set of ordered pairs such that the 2nd element of each pair is one more than twice the first.

a) Write f(x) in terms of x

b) Find 
$$f(7)$$
 =  $2(3) + 1 = 15$ 

c) Find 
$$f(-3)$$
 =  $2(-3)+1 = -5$ 

e) find 
$$f(x-3)$$
 =  $2(x-3)+1$   
=  $2x-6+1$   
=  $2x-5$ 





# INVERSE INVERSE

F-BF.4: Find inverse functions.

### **Inverse Functions**

Inverse Operations:

inverse function-Switch X & y, then solve for y

If f(x) is the function, then
Example:

the inverse

Find  $f^{-1}(x)$  given  $f(x) = 3x^2 + 1$ .

Inverses are a reflection Over y = x

Find g-1(x) given the function 
$$g(x) = \sqrt{x} + 6$$

$$y = \sqrt{x} + 6$$

$$x = \sqrt{y} + 6$$

$$(x - 6)^2 = \sqrt{x}$$

PROVE it's the inverse original (x - 6) = 10x;

$$(x - 6)^2 = \sqrt{x} + 6$$

PROVE it's the inverse original (x - 6) = 10x;

$$(x - 6)^2 = \sqrt{x} + 6$$

What is the result both times?

#### Homework: p. 166-167 #12-24 multiples of 4

In 11–16, determine if the function has an inverse. If so, list the pairs of the inverse function. If not, explain why there is no inverse function.

**16.** 
$$\{(x, y) : y = x^2 + 2 \text{ for } 0 \le x \le 5\}$$

In 17–20: **a.** Find the inverse of each given function. **b.** Describe the domain and range of each given function and its inverse in terms of the largest possible subset of the real numbers.

**20.** 
$$f(x) = \sqrt{x}$$

In 24–26, sketch the inverse of the given function.



