Warm Up. $y = \alpha(x-h)^2 + k$

Given $y = -(x + 2)^2 - 3$, determine the following:

- a. Does the parabola open up of down?
- b. What is the vertex? (2, -3)
- c. Write the equation of the parabola in standard forp

A parabola is defined as follows:

For a given **point**, called **the focus**, and a given **line not through the focus**, called the **directrix**, a **parabola** is the **locus of points** such that the distance to the focus equals the distance to the directrix.

Example #1: Write an equation for the parabola with the focus at (1,-2)

Example #2: If the focus of a parabola is (2, 5) and the directrix is y = 3, find the equation of the

EXAMPLE #3

If the focus of a parabola is (-1, 6) and the directrix is y = 9, find the

EXAMPLE #4

Given: $y = (x-1)^2 + 2$

a. Find the vertex.

b. Find the focus and directrix.

EXAMPLE #5

Given: $y = 2x^2 + 8x + 10$

a. Find the vertex.

$$(-2,2)$$

b. Write the equation in vertex form. $1\lambda = \alpha(\lambda - h)^2 + K$

c. Find the focus and directrix.

